Utilizing Charge Effects and Minimizing Intramolecular Proton Rearrangement to Improve the Overpotential of a Thiosemicarbazonato Zinc HER Catalyst.
Steve P CroninAbdullah Al MamunMegan J MackintoshMark S MashutaYaroslav LosovyjPawel M KozlowskiRobert M BuchananCraig A GrapperhausPublished in: Inorganic chemistry (2019)
The zinc(II) complex of diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-hydrazonepyridine), ZnL1 (1), was prepared and evaluated as a precatalyst for the hydrogen evolution reaction (HER) under homogeneous conditions in acetonitrile. Complex 1 is protonated on the noncoordinating nitrogen of the hydrazonepyridine moiety to yield the active catalyst Zn(HL1)OAc (2) upon addition of acetic acid. Addition of methyl iodide to 1 yields the corresponding methylated derivative ZnL2I (3). In solution, partial dissociation of the coordinated iodide yields the cationic derivative 3'. Complexes 1-3 were characterized by 1H NMR, FT-IR, and UV-visible spectroscopies. The solid-state structures of 2 and 3 were determined by single crystal X-ray diffraction. HER studies conducted in acetonitrile with acetic acid as the proton source yield a turnover frequency (TOF) of 7700 s-1 for solutions of 1 at an overpotential of 1.27 V and a TOF of 6700 s-1 for solutions of 3 at an overpotential of 0.56 V. For both complexes, the required potential for catalysis, Ecat/2, is larger than the thermodynamic reduction potential, E1/2, indicative of a kinetic barrier attributed to intramolecular proton rearrangement. The effect is larger for solutions of 1 (+440 mV) than for solutions of 3 (+160 mV). Controlled potential coulometry studies were used to determine faradaic efficiencies of 71 and 89% for solutions of 1 and 3, respectively. For both catalysts, extensive cycling of potential under catalytic conditions results in the deposition of a film on the glassy carbon electrode surface that is active as an HER catalyst. Analysis of the film of 3 by X-ray photoelectron spectroscopy indicates the complex remains intact upon deposition. A proposed ligand-centered HER mechanism with 1 as a precatalyst to 2 is supported computationally using density functional theory (DFT). All catalytic intermediates in the mechanism were structurally and energetically characterized with the DFT/B3LYP/6-311g(d,p) in solution phase using a polarizable continuum model (PCM). The thermodynamic feasibility of the mechanism is supported by calculation of equilibrium constants or reduction potentials for each proposed step.
Keyphrases
- solid state
- density functional theory
- high resolution
- room temperature
- reduced graphene oxide
- highly efficient
- molecular dynamics
- mass spectrometry
- ionic liquid
- ms ms
- human health
- electron transfer
- magnetic resonance
- crystal structure
- risk assessment
- carbon dioxide
- case control
- gold nanoparticles
- computed tomography
- heavy metals
- postmenopausal women