Login / Signup

Light-Induced Cell Alignment and Harvest for Anisotropic Cell Sheet Technology.

Chao LiuYing ZhouMiao SunQi LiLingqing DongLiang MaKui ChengWenjian WengMengfei YuHuiming Wang
Published in: ACS applied materials & interfaces (2017)
Well-organized orientation of cells and anisotropic extracellular matrix (ECM) are crucial in engineering biomimetic tissues, such as muscles, arteries, and nervous system, and so on. This strategy, however, is only beginning to be explored. Here, we demonstrated a light-induced cell alignment and harvest for anisotropic cell sheets (ACS) technology using light-responsive TiO2 nanodots film (TNF) and photo-cross-linkable gelatin methacrylate (GelMA). Cell initial behaviors on TNF might be controlled by micropatterns of light-induced distinct surface hydroxyl features, owing to a sensing mechanism of myosin II-driven retraction of lamellipodia. Further light treatment allowed ACS detachment from TNF surface while simultaneously solidified the GelMA, realizing the automatic transference of ACS. Moreover, two detached ACS were successfully stacked into a 3D bilayer construct with controllable orientation of individual layer and maintained cell alignment for more than 7 days. Interestingly, the anisotropic HFF-1 cell sheets could further induce the HUVECs to form anisotropic capillary-like networks via upregulating VEGFA and ANGPT1 and producing anisotropic ECM. This developed integrated-functional ACS technology therefore provides a novel route to produce complex tissue constructs with well-defined orientations and may have a profound impact on regenerative medicine.
Keyphrases