Human-Induced Pluripotent Stem Cell-Derived Neural Stem Cell Therapy Limits Tissue Damage and Promotes Tissue Regeneration and Functional Recovery in a Pediatric Piglet Traumatic-Brain-Injury Model.
Sarah L SchantzSydney E SneedMadison M FaganMorgane E GolanSavannah R CheekHolly A KinderKylee J DubersteinErin E KaiserFranklin D WestPublished in: Biomedicines (2024)
Traumatic brain injury (TBI) is a leading cause of death and disability in pediatric patients and often results in delayed neural development and altered connectivity, leading to lifelong learning, memory, behavior, and motor function deficits. Induced pluripotent stem cell-derived neural stem cells (iNSCs) may serve as a novel multimodal therapeutic as iNSCs possess neuroprotective, regenerative, and cell-replacement capabilities post-TBI. In this study, we evaluated the effects of iNSC treatment on cellular, tissue, and functional recovery in a translational controlled cortical impact TBI piglet model. Five days post-craniectomy (n = 6) or TBI (n = 18), iNSCs (n = 7) or PBS (n = 11) were injected into perilesional brain tissue. Modified Rankin Scale (mRS) neurological evaluation, magnetic resonance imaging, and immunohistochemistry were performed over the 12-week study period. At 12-weeks post-transplantation, iNSCs showed long-term engraftment and differentiation into neurons, astrocytes, and oligodendrocytes. iNSC treatment enhanced endogenous neuroprotective and regenerative activities indicated by decreasing intracerebral immune responses, preserving endogenous neurons, and increasing neuroblast formation. These cellular changes corresponded with decreased hemispheric atrophy, midline shift, and lesion volume as well as the preservation of cerebral blood flow. iNSC treatment increased piglet survival and decreased mRS scores. The results of this study in a predictive pediatric large-animal pig model demonstrate that iNSC treatment is a robust multimodal therapeutic that has significant promise in potentially treating human pediatric TBI patients.
Keyphrases
- traumatic brain injury
- cell therapy
- stem cells
- magnetic resonance imaging
- severe traumatic brain injury
- immune response
- endothelial cells
- end stage renal disease
- chronic kidney disease
- clinical trial
- newly diagnosed
- brain injury
- pain management
- combination therapy
- computed tomography
- prognostic factors
- high glucose
- toll like receptor
- study protocol
- functional connectivity
- peritoneal dialysis
- contrast enhanced