Login / Signup

Effect of Hydrogen Addition on Coke Formation and Product Distribution in Catalytic Coupling of Methane.

Rolf Sybren PostmaLeon Lefferts
Published in: Industrial & engineering chemistry research (2024)
The effect of hydrogen addition on catalytic nonoxidative coupling of methane at 1000 °C was investigated. Experiments were performed at varying ratios between the catalyst and the postcatalytic volume to discern the effect of hydrogen on the catalytic reaction as well as on the gas-phase reaction. Adding 10% H 2 decreases the methane conversion by a factor of 2, almost independent of the ratio between the catalyst and the postcatalytic residence time. The effect on the conversion is mostly determined by gas-phase chemistry. Hydrogen addition has no influence on the C 2 hydrocarbon yield, whereas aromatic selectivity is significantly reduced. Changes in selectivity are attributed to changes in methane conversion. Quantitative determination of the amount of coke deposited on the catalyst reveals a decrease by 1 order of magnitude when dosing up to 10% H 2 , while carbon deposits-downstream of the catalyst bed are suppressed to a much lower extent. These results suggest a process in which the produced hydrogen is partly recycled, maximizing the carbon selectivity to C 2 hydrocarbons while minimizing both aromatics and, most crucially, formation of coke on the catalyst as well as further deposits-downstream.
Keyphrases
  • visible light
  • room temperature
  • carbon dioxide
  • ionic liquid
  • anaerobic digestion
  • highly efficient
  • reduced graphene oxide
  • metal organic framework
  • molecularly imprinted