Login / Signup

Effects of Ancillary Ligands on Deep Red to Near-Infrared Cyclometalated Iridium Complexes.

Po Ni LaiSungwon YoonYumeng WuThomas S Teets
Published in: ACS organic & inorganic Au (2022)
The design of organometallic compounds with efficient phosphorescence in the deep red to near-infrared portions of the spectrum is a long-standing fundamental challenge. Here we describe a series of heteroleptic bis-cyclometalated iridium complexes with phosphorescence in these low-energy regions of the spectrum. The cyclometalating ligands in this study feature a metalated benzothiophene aryl group substituted with a quinoline, isoquinoline, or phenanthridine heterocycle. Increasing the conjugation on the heterocycle stabilizes the ligand-centered LUMO, decreases the HOMO-LUMO gap, and enables phosphorescence to occur at long wavelengths. These cyclometalating ligands are paired with a variety of electron-rich ancillary ligands, such as dithiocarbamate (dipdtc), β-ketoiminate (acNac), β-diketiminate (NacNac), amidinate (dipba), and hexahydropyrimidopyrimidine (hpp), some of which have significant influences on the phosphorescence wavelength and excited-state dynamics. The syntheses of seven compounds in this series are described, three of which are structurally validated by single-crystal X-ray diffraction. Cyclic voltammetry reveals the effects of ligand modification on the frontier orbital energies. The photophysical properties of all compounds are thoroughly characterized by UV-vis absorption spectroscopy and steady-state photoluminescence at room-temperature and 77 K. Photoluminescence quantum yields and lifetimes of all compounds are reported.
Keyphrases
  • room temperature
  • ionic liquid
  • quantum dots
  • high resolution
  • molecular docking
  • machine learning
  • deep learning
  • magnetic resonance imaging
  • electron microscopy
  • mass spectrometry