Distribution of GC-rich heterochromatin and ribosomal genes in three fungus-farming ants (Myrmicinae, Attini, Attina): insights on chromosomal evolution.
Gisele Amaro TeixeiraLuísa Antônia Campos BarrosHilton Jeferson Alves Cardoso de AguiarDenilce Meneses LopesPublished in: Comparative cytogenetics (2021)
Cytogenetic studies on fungus-farming ants have shown remarkable karyotype diversity, suggesting different chromosomal rearrangements involved in karyotype evolution in some genera. A notable cytogenetic characteristic in this ant group is the presence of GC-rich heterochromatin in the karyotypes of some ancient and derivative species. It was hypothesized that this GC-rich heterochromatin may have a common origin in fungus-farming ants, and the increase in species studied is important for understanding this question. In addition, many genera within the subtribe Attina have few or no cytogenetically studied species; therefore, the processes that shaped their chromosomal evolution remain obscure. Thus, in this study, we karyotyped, through classical and molecular cytogenetic techniques, the fungus-farming ants Cyphomyrmextransversus Emery, 1894, Sericomyrmexmaravalhas Ješovnik et Schultz, 2017, and Mycetomoelleriusrelictus (Borgmeier, 1934), to provide insights into the chromosomal evolution in these genera and to investigate the presence the GC-rich heterochromatin in these species. Cyphomyrmextransversus (2n = 18, 10m + 2sm + 6a) and S.maravalhas (2n = 48, 28m + 20sm) showed karyotypes distinct from other species from their genera. Mycetomoelleriusrelictus (2n = 20, 20m) presented the same karyotype as the colonies previously studied. Notably, C.transversus presented the lowest chromosomal number for the genus and a distinct karyotype from the other two previously observed for this species, showing the existence of a possible species complex and the need for its taxonomic revision. Chromosomal banding data revealed GC-rich heterochromatin in all three species, which increased the number of genera with this characteristic, supporting the hypothesis of a common origin of GC-rich heterochromatin in Attina. Although a single chromosomal pair carries rDNA genes in all studied species, the positions of these rDNA clusters varied. The rDNA genes were located in the intrachromosomal region in C.transversus and M.relictus , and in the terminal region of S.maravalhas . The combination of our molecular cytogenetic data and observations from previous studies corroborates that a single rDNA site located in the intrachromosomal region is a plesiomorphic condition in Attina. In addition, cytogenetic data obtained suggest centric fission events in Sericomyrmex Mayr, 1865, and the occurrence of inversions as the origin of the location of the ribosomal genes in M.relictus and S.maravalhas . This study provides new insights into the chromosomal evolution of fungus-farming ants.