Login / Signup

Multifaceted role of branched-chain amino acid metabolism in cancer.

Hui PengYingfei WangMaowu Luo
Published in: Oncogene (2020)
Metabolic reprogramming fulfils increased nutrient demands and regulates numerous oncogenic processes in tumors, leading to tumor malignancy. Branched-chain amino acids (BCAAs, i.e., valine, leucine, and isoleucine) function as nitrogen donors to generate macromolecules such as nucleotides and are indispensable for human cancer cell growth. The cell-autonomous and non-autonomous roles of altered BCAA metabolism have been implicated in cancer progression and the key proteins in the BCAA metabolic pathway serve as possible prognostic and diagnostic biomarkers in human cancers. Here we summarize how BCAA metabolic reprogramming is regulated in cancer cells and how it influences cancer progression.
Keyphrases
  • papillary thyroid
  • amino acid
  • squamous cell
  • endothelial cells
  • transcription factor
  • lymph node metastasis
  • squamous cell carcinoma
  • induced pluripotent stem cells
  • cell therapy
  • bone marrow
  • mesenchymal stem cells