Topological Spin-Charge Gearbox on a Real Molecular Magnet.
Georgios LefkidisW JinJ LiuD DuttaW HübnerPublished in: The journal of physical chemistry letters (2020)
In this work, using ab initio many-body theory and inspired by an idea suggested by G. D. Mahan for an abstract N-dimensional chain composed of s-type atoms ( Phys. Rev. Lett. 2009, 102, 016801), we propose a functional topological spin-charge gearbox based on the real synthesized Co3Ni(EtOH) cluster driven with laser pulses. We analyze the implications arising from the use of a real molecule with d-character functional orbitals rather than an extended system and discuss the role of the point group symmetry of the system and the transferability of the electronic and spin density between different many-body states using specially designed laser pulses. We thus find that first-row transition-metal elements can host unpaired yet correlated d electrons and thus act as sites for spin information carriers, while designated laser pulses induce symmetry operations leading to a realizable spin-charge gearbox.