Login / Signup

Generation of (2-Nitroethyl)benzene and related benzenoids from L-Phenylalanine; flower scents of the Japanese Loquat Eriobotrya japonica [Rosales: Rosaceae].

Yasumasa KuwaharaYasuhisa Asano
Published in: Bioscience, biotechnology, and biochemistry (2018)
(2-Nitroethyl)benzene, methyl 4-methoxybenzoate and 4-methoxybenzaldehyde have been known as major scent components in flowers of the Japanese loquat Eriobotrya japonica [Rosales: rosaceae], together with 13 related benzenoids, including Z- and E-2-phenylacetaldoxime and benzyl alcohol. The scents air-trapped from a flowering panicle during 24 h incubation with d8-L-phenylalanine were composed of 15 deuterium labeled compounds {d6-styrene, d5-benzaldehyde, d7-2-phenylacetaldehyde, methyl d5-benzoate, d7 -2-phenylethanol, d7-2-phenylacetonitrile, d4-1,4-dimethoxybenzene, d7-Z-2-phenylacetaldoxime, d4-4-methoxybenzaldehyde, d7-E-2-phenylacetaldoxime, d4-4-methoxybenzyl alcohol, d7-(2-nitroethyl)benzene, methyl d4-4-methoxybenzoate, methyl d6-cinnamate and ethyl d4-4-methoxybenzoate}. On the other hand, hexane extracts of the flower petal incubate with a mixture of d5-Z- and d5-E-2-phenylacetaldoxime after 24 h indicated generation of six d5-labeld components {d5-benzaldehyde, d5-benzyl alcohol, d5-2-phenylacetaldehyde, methyl d5-benzoate, d5-2-phenylethanol, and d5-(2-nitroethyl)benzene}. By comparing those results, (2-nitroethyl)benzene was concluded as a product directly generated from a mixture of Z- and E-2-phenylacetaldoxime together with six minor benzenoids, while two major compounds (4-methoxybenzaldehyde and methyl 4-methoxybenzoate) together with three minors from L-phenylalanine, presumably via L-tyrosine. The other two minor components were derived from L-phenylalanine.
Keyphrases