Utilizing Integrated UHPLC-Q-Exactive Orbitrap-MS, Multivariate Analysis, and Bioactive Evaluation to Distinguish between Wild and Cultivated Niudali ( Millettia speciosa Champ.).
Yuwei ZengQing YangBinbin HuangMing ChenZichang LiangZhifeng ZhangJianguang ZhangPublished in: Molecules (Basel, Switzerland) (2024)
Millettia speciosa Champ. (MSCP) enjoys widespread recognition for its culinary and medicinal attributes. Despite the extensive history of MSCP cultivation, the disparities in quality and bioactivity between wild and cultivated varieties have remained unexplored. In this study, 20 wild and cultivated MSCP samples were collected from different regions in China. We embarked on a comprehensive investigation of the chemical constituents found in both wild and cultivated MSCP utilizing UHPLC-Q-Exactive Orbitrap-MS technology and multivariate analysis such as principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). In total, 62 chemical components were unequivocally identified or tentatively characterized. Via the multivariate statistical analysis, we successfully pinpointed nine compounds with the potential to serve as chemical markers, enabling the differentiation between wild and cultivated MSCP varieties. Moreover, both genotypes exhibited substantial antioxidant and anti-fatigue properties. The bioactivities of wild MSCP were marginally higher when compared to their cultivated counterparts. This study illuminates the impressive antioxidant and anti-fatigue potential present in both wild and cultivated MSCP genotypes, further augmenting the allure of this species and opening new avenues for the economic valorization of MSCP. Hence, this study provides a valuable method for the identification and quality control of MSCP and a method in chemistry and pharmacology to assess an alternative possibility for cultivated MSCP.