Login / Signup

Motion and teleportation of polar bubbles in low-dimensional ferroelectrics.

Sergei ProkhorenkoYousra NahasV GovindenQ ZhangNagarajan ValanoorLaurent Bellaiche
Published in: Nature communications (2024)
Electric bubbles are sub-10nm spherical vortices of electric dipoles that can spontaneously form in ultra-thin ferroelectrics. While the static properties of electric bubbles are well established, little to nothing is known about the dynamics of these particle-like structures. Here, we reveal pathways to realizing both the spontaneous and controlled dynamics of electric bubbles in ultra-thin Pb(Zr 0.4 Ti 0.6 )O 3 films. In low screening conditions, we find that electric bubbles exhibit thermally-driven chaotic motion giving rise to a liquid-like state. In the high screening regime, we show that bubbles remain static but can be continuously displaced by a local electric field. Additionally, we predict and experimentally demonstrate the possibility of bubble teleportation - a process wherein a bubble is transferred to a new location via a single electric field pulse of a PFM tip. Finally, we attribute the discovered phenomena to the hierarchical structure of the energy landscape.
Keyphrases
  • high resolution
  • single cell
  • blood pressure
  • ionic liquid
  • computed tomography
  • photodynamic therapy
  • room temperature
  • pet imaging
  • dna methylation
  • mass spectrometry
  • light emitting