Influence of Infill Patterns on the Shape Memory Effect of Cold-Programmed Additively Manufactured PLA.
Vladimir Barrera-QuinteroErasmo Correa-GómezAlberto Caballero-RuizLeopoldo Ruiz-HuertaPublished in: Polymers (2024)
In four-dimensional additive manufacturing (4DAM), specific external stimuli are applied in conjunction with additive manufacturing technologies. This combination allows the development of tailored stimuli-responsive properties in various materials, structures, or components. For shape-changing functionalities, the programming step plays a crucial role in recovery after exposure to a stimulus. Furthermore, precise tuning of the 4DAM process parameters is essential to achieve shape-change specifications. Within this context, this study investigated how the structural arrangement of infill patterns (criss-cross and concentric) affects the shape memory effect (SME) of compression cold-programmed PLA under a thermal stimulus. The stress-strain curves reveal a higher yield stress for the criss-cross infill pattern. Interestingly, the shape recovery ratio shows a similar trend across both patterns at different displacements with shallower slopes compared to a higher shape fixity ratio. This suggests that the infill pattern primarily affects the mechanical strength (yield stress) and not the recovery. Finally, the recovery force increases proportionally with displacement. These findings suggest a consistent SME under the explored interval (15-45% compression) despite the infill pattern; however, the variations in the mechanical properties shown by the stress-strain curves appear more pronounced, particularly the yield stress.