Inhibition of eNOS Partially Blunts the Beneficial Effects of Nebivolol on Angiotensin II-Induced Signaling in H9c2 Cardiomyoblasts.
Rukhsana GulNouf AlsalmanAssim A AlfaddaPublished in: Current issues in molecular biology (2022)
We have recently illustrated that nebivolol can inhibit angiotensin II (Ang II)-mediated signaling in cardiomyoblasts; however, to date, the detailed mechanism for the beneficial effects of nebivolol has not been studied. Here, we investigated whether the inhibition of NO bioavailability by blocking eNOS (endothelial nitric oxide synthase) using L-NG-nitroarginine methyl ester (L-NAME) would attenuate nebivolol-mediated favorable effects on Ang II-evoked signaling in H9c2 cardiomyoblasts. Our data reveal that the nebivolol-mediated antagonistic effects on Ang II-induced oxidative stress were retreated by concurrent pretreatment with L-NAME and nebivolol. Similarly, the expressions of pro-inflammatory markers TNF-α and iNOS stimulated by Ang II were not decreased with the combination of nebivolol plus L-NAME. In contrast, the nebivolol-induced reduction in the Ang II-triggered mTORC1 pathway and the mRNA levels of hypertrophic markers ANP, BNP, and β-MHC were not reversed with the addition of L-NAME to nebivolol. In compliance with these data, the inhibition of eNOS by L-N⁵-(1-Iminoethyl) ornithine (LNIO) and its upstream regulator AMP-activated kinase (AMPK) with compound C in the presence of nebivolol showed effects similar to those of the L-NAME plus nebivolol combination on Ang II-mediated signaling. Pretreatment with either compound C plus nebivolol or LNIO plus nebivolol showed similar effects to those of the L-NAME plus nebivolol combination on Ang II-mediated signaling. In conclusion, our data indicate that the rise in NO bioavailability caused by nebivolol via the stimulation of AMPK/eNOS signaling is key for its anti-inflammatory and antioxidant properties but not for its antihypertrophic response upon Ang II stimulation.
Keyphrases
- angiotensin ii
- nitric oxide synthase
- angiotensin converting enzyme
- vascular smooth muscle cells
- anti inflammatory
- nitric oxide
- rheumatoid arthritis
- gene expression
- pi k akt
- computed tomography
- magnetic resonance
- dna methylation
- magnetic resonance imaging
- radiation therapy
- genome wide
- single cell
- drug induced
- diabetic rats
- cell proliferation