Login / Signup

Larger hip external rotation motion is associated with larger knee abduction and internal rotation motions during a drop vertical jump.

Tomoya IshidaYuta KoshinoMasanori YamanakaRyo UenoShohei TaniguchiTakumi InoSatoshi KasaharaMina SamukawaHarukazu Tohyama
Published in: Sports biomechanics (2021)
Associations among hip motions, knee abduction and internal rotation motion during a drop vertical jump (DVJ), which increases the risk of anterior cruciate ligament injury, remain unclear. The purpose of this study was to examine associations among knee abduction, internal rotation and hip joint motions during a DVJ. Fifty-seven young female participants performed a DVJ from a 30-cm height. Hip and knee kinematics and kinetics were analysed using a three-dimensional motion analysis system and force plates. Multiple regression analysis showed that peak knee abduction angle was negatively associated with knee internal rotation and hip internal rotation excursions from initial contact (IC) to peak knee flexion, and positively associated with peak knee abduction moment (R2 = 0.465, P< 0.001). Peak knee internal rotation angle was negatively associated with the hip flexion excursion from IC to peak knee flexion and peak hip adduction moment (R2 = 0.194, P= 0.001). In addition, hip internal rotation excursion was negatively associated with knee abduction and internal rotation excursion from IC to 50 ms after IC. To avoid a large knee abduction and internal rotation motion during jump-landing training, it might be beneficial to provide landing instructions to avoid a large hip external rotation motion.
Keyphrases