Comparative Transcriptome Analysis Provides Insights into the Resistance in Pueraria [ Pueraria lobata (Willd.) Ohwi ] in Response to Pseudo-Rust Disease.
Xinlu HuangXiaoxi HuangLijun GuoLongfei HeDong XiaoJie ZhanAiqin WangRenfan LiangPublished in: International journal of molecular sciences (2022)
Pueraria lobata is an important medicinal and edible homologous plant that is widely cultivated in Asian countries. However, its production and quality are seriously threatened by its susceptibility to pseudo-rust disease. The underlying molecular mechanisms are poorly known, particularly from a transcriptional perspective. Pseudo-rust disease is a major disease in pueraria, primarily caused by Synchytrium puerariae Miy (SpM). In this study, transcriptomic profiles were analyzed and compared between two pueraria varieties: the disease-resistant variety (GUIGE18) and the susceptible variety (GUIGE8). The results suggest that the number of DEGs in GUIGE18 is always more than in GUIGE8 at each of the three time points after SpM infection, indicating that their responses to SpM infection may be different, and that the active response of GUIGE18 to SpM infection may occur earlier than that of GUIGE8. A total of 7044 differentially expressed genes (DEGs) were identified, and 406 co-expressed DEGs were screened out. Transcription factor analysis among the DEGs revealed that the bHLH, WRKY, ERF, and MYB families may play an important role in the interaction between pueraria and pathogens. A GO and KEGG enrichment analysis of these DEGs showed that they were mainly involved in the following pathways: metabolic, defense response, plant hormone signal transduction, MAPK signaling pathway-plant, plant pathogen interaction, flavonoid biosynthesis, phenylpropanoid biosynthesis, and secondary metabolite biosynthesis. The CPK, CESA, PME, and CYP gene families may play important roles in the early stages after SpM infection. The DEGs that encode antioxidase (CAT, XDH, and SOD) were much more up-regulated. Defense enzyme activity, endogenous hormones, and flavonoid content changed significantly in the two varieties at the three infection stages. Finally, we speculated on the regulatory pathways of pueraria pseudo-rust and found that an oxidation-reduction process, flavonoid biosynthesis, and ABA signaling genes may be associated with the response to SpM infection in pueraria. These results expand the understanding of pueraria resistance and physiological regulations by multiple pathways.