Login / Signup

Nanotechnology-Based Strategies for Effective and Rapid Detection of SARS-CoV-2.

Koena L MoabeloDarius Riziki MartinAdewale O FadakaNicole Remaliah Samantha SibuyiMervin MeyerAbram Madimabe Madiehe
Published in: Materials (Basel, Switzerland) (2021)
The coronavirus disease 2019 (COVID-19) pandemic has gained worldwide attention and has prompted the development of innovative diagnostics, therapeutics, and vaccines to mitigate the pandemic. Diagnostic methods based on reverse transcriptase-polymerase chain reaction (RT-PCR) technology are the gold standard in the fight against COVID-19. However, this test might not be easily accessible in low-resource settings for the early detection and diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The lack of access to well-equipped clinical laboratories, requirement for the high level of technical competence, and the cost of the RT-PCR test are the major limitations. Moreover, RT-PCR is unsuitable for application at the point-of-care testing (PoCT) as it is time-consuming and lab-based. Due to emerging mutations of the virus and the burden it has placed on the health care systems, there is a growing urgency to develop sensitive, selective, and rapid diagnostic devices for COVID-19. Nanotechnology has emerged as a versatile technology in the production of reliable diagnostic tools for various diseases and offers new opportunities for the development of COVID-19 diagnostic systems. This review summarizes some of the nano-enabled diagnostic systems that were explored for the detection of SARS-CoV-2. It highlights how the unique physicochemical properties of nanoparticles were exploited in the development of novel colorimetric assays and biosensors for COVID-19 at the PoCT. The potential to improve the efficiency of the current assays, as well as the challenges associated with the development of these innovative diagnostic tools, are also discussed.
Keyphrases