Crossing Phylums: Butterfly Wing as a Natural Perfusable Three-Dimensional (3D) Bioconstruct for Bone Tissue Engineering.
Fatemeh MostofiMarzieh MostofiBehnaz NiroomandSaadi HosseiniAtefeh AlipourShahin HomaeigoharJavad MohammadiMohammad Ali ShokrgozarHosein ShahsavaraniPublished in: Journal of functional biomaterials (2022)
Despite the advent of promising technologies in tissue engineering, finding a biomimetic 3D bio-construct capable of enhancing cell attachment, maintenance, and function is still a challenge in producing tailorable scaffolds for bone regeneration. Here, osteostimulatory effects of the butterfly wings as a naturally porous and non-toxic chitinous scaffold on mesenchymal stromal cells are assessed. The topographical characterization of the butterfly wings implied their ability to mimic bone tissue microenvironment, whereas their regenerative potential was validated after a 14-day cell culture. In vivo analysis showed that the scaffold induced no major inflammatory response in Wistar rats. Topographical features of the bioconstruct upregulated the osteogenic genes, including COL1A1 , ALP , BGLAP , SPP1 , SP7 , and AML3 in differentiated cells compared to the cells cultured in the culture plate. However, butterfly wings were shown to provide a biomimetic microstructure and proper bone regenerative capacity through a unique combination of various structural and material properties. Therefore, this novel platform can be confidently recommended for bone tissue engineering applications.
Keyphrases
- tissue engineering
- bone regeneration
- bone mineral density
- induced apoptosis
- inflammatory response
- cell cycle arrest
- soft tissue
- bone loss
- stem cells
- mesenchymal stem cells
- postmenopausal women
- endoplasmic reticulum stress
- oxidative stress
- single cell
- cell death
- toll like receptor
- risk assessment
- white matter
- high throughput
- lps induced
- drug induced
- genome wide identification