Login / Signup

Compact single-shot metalens depth sensors inspired by eyes of jumping spiders.

Qi GuoZhujun ShiYao-Wei HuangEmma AlexanderCheng-Wei QiuFederico CapassoTodd Zickler
Published in: Proceedings of the National Academy of Sciences of the United States of America (2019)
Jumping spiders (Salticidae) rely on accurate depth perception for predation and navigation. They accomplish depth perception, despite their tiny brains, by using specialized optics. Each principal eye includes a multitiered retina that simultaneously receives multiple images with different amounts of defocus, and from these images, distance is decoded with relatively little computation. We introduce a compact depth sensor that is inspired by the jumping spider. It combines metalens optics, which modifies the phase of incident light at a subwavelength scale, with efficient computations to measure depth from image defocus. Instead of using a multitiered retina to transduce multiple simultaneous images, the sensor uses a metalens to split the light that passes through an aperture and concurrently form 2 differently defocused images at distinct regions of a single planar photosensor. We demonstrate a system that deploys a 3-mm-diameter metalens to measure depth over a 10-cm distance range, using fewer than 700 floating point operations per output pixel. Compared with previous passive depth sensors, our metalens depth sensor is compact, single-shot, and requires a small amount of computation. This integration of nanophotonics and efficient computation brings artificial depth sensing closer to being feasible on millimeter-scale, microwatts platforms such as microrobots and microsensor networks.
Keyphrases
  • optical coherence tomography
  • diabetic retinopathy
  • optic nerve
  • deep learning
  • convolutional neural network
  • low cost
  • palliative care
  • mass spectrometry
  • high resolution
  • machine learning
  • cataract surgery