Login / Signup

Q-Meter: Quality Monitoring System for Telecommunication Services Based on Sentiment Analysis Using Deep Learning.

Samuel Terra VieiraRenata Lopes RosaDemóstenes Zegarra RodríguezMiguel Arjona RamírezMuhammad SaadiLunchakorn Wuttisittikulkij
Published in: Sensors (Basel, Switzerland) (2021)
A quality monitoring system for telecommunication services is relevant for network operators because it can help to improve users' quality-of-experience (QoE). In this context, this article proposes a quality monitoring system, named Q-Meter, whose main objective is to improve subscriber complaint detection about telecommunication services using online-social-networks (OSNs). The complaint is detected by sentiment analysis performed by a deep learning algorithm, and the subscriber's geographical location is extracted to evaluate the signal strength. The regions in which users posted a complaint in OSN are analyzed using a freeware application, which uses the radio base station (RBS) information provided by an open database. Experimental results demonstrated that sentiment analysis based on a convolutional neural network (CNN) and a bidirectional long short-term memory (BLSTM)-recurrent neural network (RNN) with the soft-root-sign (SRS) activation function presented a precision of 97% for weak signal topic classification. Additionally, the results showed that 78.3% of the total number of complaints are related to weak coverage, and 92% of these regions were proved that have coverage problems considering a specific cellular operator. Moreover, a Q-Meter is low cost and easy to integrate into current and next-generation cellular networks, and it will be useful in sensing and monitoring tasks.
Keyphrases