(E)-Nicotinaldehyde O-Cinnamyloxime, a Nicotine Analog, Attenuates Neuronal Cells Death Against Rotenone-Induced Neurotoxicity.
Juan Camilo Jurado-CoronelAlix E LoaizaJohn E DíazRicardo CabezasGhulam Md AshrafAmirhossein SahebkarValentina EcheverriaJanneth GonzálezGeorge E BarretoPublished in: Molecular neurobiology (2018)
Parkinson's disease (PD) is a neurodegenerative pathology characterized by resting tremor, rigidity, bradykinesia, and loss of dopamine-producing neurons in the pars compacta of the substantia nigra in the central nervous system (CNS) that result in dopamine depletion in the striatum. Oxidative stress has been documented as a key pathological mechanism for PD. Epidemiological studies have shown that smokers have a lower incidence of PD. In this aspect, different studies have shown that nicotine, a chemical compound found in cigarette, is capable of exerting beneficial effects in PD patients, but it can hardly be used as a therapeutic agent because of its inherent toxicity. Several studies have suggested that the use of nicotine analogs can have the same benefits as nicotine but lack its toxicity. In this study, we assessed the effects of two nicotine analogs, (E)-nicotinaldehyde O-cinnamyloxime and 3-(pyridin-3-yl)-3a,4,5,6,7,7a-hexahidrobenzo[d]isoxazole, in an in vitro model of PD. Initially, we performed a computational prediction of the molecular interactions between the nicotine analogs with the α7 nicotinic acetylcholine receptor (nAChR). Furthermore, we evaluated the effect of nicotine, nicotine analogs and rotenone on cell viability and reactive oxygen species (ROS) production in the SH-SY5Y neuronal cell line to validate possible protective effects. We observed that pre-treatment with nicotine or (E)-nicotinaldehyde O-cinnamyloxime (10 μM) improved cell viability and diminished ROS production in SH-SY5Y cells insulted with rotenone. These findings suggest that nicotine analogs have a potential protective effect against oxidative damage in brain pathologies.
Keyphrases
- smoking cessation
- oxidative stress
- reactive oxygen species
- induced apoptosis
- replacement therapy
- molecular docking
- dna damage
- end stage renal disease
- cell death
- chronic kidney disease
- cell cycle arrest
- blood pressure
- risk factors
- spinal cord injury
- signaling pathway
- brain injury
- blood brain barrier
- cerebral ischemia
- endoplasmic reticulum stress
- uric acid
- resting state