Login / Signup

Carbenes from cyclopropanated aromatics.

Alexander D RothDasan M Thamattoor
Published in: Organic & biomolecular chemistry (2023)
Although a ripe old discipline by now, carbene chemistry continues to flourish as both theorists and experimentalists have shown sustained interest in this area of research. While there are numerous ways of generating carbenes, the thermal and/or photochemical decomposition of diazo compounds and diazirines remains, by far, the most commonly used method of producing these intermediates. There is no disputing the fact that these nitrogenous precursors have served carbene researchers well, but their use is not without problems. They are often sensitive and hazardous to handle and, sometimes, the desired nitrogenous precursor simply may not be available, e.g. , for synthetic reasons, to study the particular carbene of interest. Furthermore, there is a legitimate concern that the photochemical generation of carbenes in solution from diazo compounds and diazirines may be contaminated by reactions in the excited states (RIES) of the precursors themselves. As an alternative, several laboratories, including ours, have used cyclopropanated aromatic systems to generate a wide range of carbenes. In each case, the cheleotropic extrusion of carbenes is accompanied by the formation of stable aromatic by-products such as phenanthrene, indane, naphthalene, and 1,4-dihydronaphthalene. The emergence of these "non-traditional" carbene sources, their versatility, and promise are reviewed in this work.
Keyphrases
  • drinking water
  • heavy metals
  • amino acid
  • machine learning
  • risk assessment