3D-Printed Strong Dental Crown with Multi-Scale Ordered Architecture, High-Precision, and Bioactivity.
Menglu ZhaoDanlei YangSuna FanXiang YaoJiexin WangMeifang ZhuYaopeng ZhangPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2021)
Mimicking the multi-scale highly ordered hydroxyapatite (HAp) nanocrystal structure of the natural tooth enamel remains a great challenge. Herein, a bottom-up step-by-step strategy is developed using extrusion-based 3D printing technology to achieve a high-precision dental crown with multi-scale highly ordered HAp structure. In this study, hybrid resin-based composites (RBCs) with "supergravity +" HAp nanorods can be printed smoothly via direct ink writing (DIW) 3D printing, induced by shear force through a custom-built nozzle with a gradually shrinking channel. The theoretical simulation results of finite element method are consistent with the experimental results. The HAp nanorods are first highly oriented along a programmable printing direction in a single printed fiber, then arranged in a layer by adjusting the printing path, and finally 3D printed into a highly ordered and complex crown structure. The printed samples with criss-crossed layers by interrupting crack propagation exhibit a flexural strength of 134.1 ± 3.9 MPa and a compressive strength of 361.6 ± 8.9 MPa, which are superior to the corresponding values of traditional molding counterparts. The HAp-monodispersed RBCs are successfully used to print strong and bioactive dental crowns with a printing accuracy of 95%. This new approach can help provide customized components for the clinical restoration of teeth.