Comparison of Ligand Architecture on Vapor Deposition Precursors: Synthesis, Characterization, and Reactivity of Volatile Cadmium Bis-Amidinate Complexes.
Michael J FoodyMatthew S WeimerHarish BhandariAdam S HockPublished in: Inorganic chemistry (2021)
The lack of low-temperature (<200 °C) and easy-to-handle vapor deposition precursors for cadmium has been a limitation for cadmium chalcogenide ALD. Here, the cadmium amidinate system is presented as a scaffold for vapor deposition precursor design because the alkyl groups can be altered to change the properties of the precursor. Thus, the molecular structure affects the precursor stability at elevated temperature, onset of volatility, and reactivity. Cadmium bis-N,N-diisopropylacetamidinate (1) was synthesized and evaluated for its thermal stability, volatility, and reactivity-properties relevant to ALD precursors. Compounds 2, cadmium bis-N,N-diisopropyltertertiarybutylamidinate, and 3, cadmium bis-N,N-diisopropylbutylamidinate, are analogous to 1 and were synthesized by substituting the alkyl group on the bridging carbon during amidinate synthesis. All three compounds are volatile under reduced pressure, and thermal stability studies showed 1 and 3 to be stable at 100 °C in solution for days to weeks, while 2 decomposed at 100 °C within 24 h. Solution phase reactivity studies show 1 to be reactive with thiols at room temperature in a stoichiometric manner. No reactivity with either bis-silyl sulfides or alkyl sulfides was observed up to 110 °C over more than 3 days. Overall, the cadmium amidinate compounds presented here show potential as precursors in ALD/CVD processing, which can contribute to research critical for semiconductor processing.