Laboratory Exercise to Measure Plasmid Copy Number by qPCR.
Benjamin DavidJinbei LiFaisal MasoodCaroline M BlassickPaul A JensenKarin J JensenPublished in: Journal of microbiology & biology education (2021)
Quantitative PCR (qPCR) has numerous applications in biology. In an educational setting, qPCR provides students an opportunity to better understand the PCR mechanism by providing both quantitative information about the reactions and also data to troubleshoot PCRs (e.g., melt curves). Here, we present a relatively short (2-h) laboratory activity to demonstrate qPCR to quantify plasmid copy number (CN) by measuring the cycle threshold (CT ) values for a genomic gene and a plasmid gene using transformed cells as a template. The activity can be combined with additional laboratory exercises, including bacterial transformation, to create the template to be used in the qPCRs. This lab activity is ideal for undergraduate laboratory courses that include recombinant DNA technology. (This work was presented at the 2020 Biomedical Engineering Society annual meeting).
Keyphrases
- copy number
- mitochondrial dna
- genome wide
- escherichia coli
- dna methylation
- crispr cas
- induced apoptosis
- high resolution
- cell free
- computed tomography
- squamous cell carcinoma
- physical activity
- gene expression
- resistance training
- molecularly imprinted
- electronic health record
- transcription factor
- cell proliferation
- deep learning
- dual energy
- oxidative stress
- real time pcr
- artificial intelligence
- magnetic resonance
- contrast enhanced
- data analysis
- liquid chromatography