Lymphatic vessels, as the main tube network of fluid drainage and leukocyte transfer, are responsible for the maintenance of homeostasis and pathological repairment. Recently, by using genetic lineage tracing and single-cell RNA sequencing techniques, significant cognitive progress has been made about the impact of stem/progenitor cells during lymphangiogenesis. In the embryonic stage, the lymphatic network is primarily formed through self-proliferation and polarized-sprouting from the lymph sacs. However, the assembly of lymphatic stem/progenitor cells also guarantees the sustained growth of lymphvasculogenesis to obtain the entire function. In addition, there are abundant sources of stem/progenitor cells in postnatal tissues, including circulating progenitors, mesenchymal stem cells, and adipose tissue stem cells, which can directly differentiate into lymphatic endothelial cells and participate in lymphangiogenesis. Specifically, recent reports indicated a novel function of lymphangiogenesis in transplant arteriosclerosis and atherosclerosis. In the present review, we summarized the latest evidence about the diversity and incorporation of stem/progenitor cells in lymphatic vasculature during both the embryonic and postnatal stages, with emphasis on the impact of lymphangiogenesis in the development of vascular diseases to provide a rational guidance for future research.
Keyphrases
- single cell
- lymph node
- stem cells
- adipose tissue
- mesenchymal stem cells
- endothelial cells
- preterm infants
- cardiovascular disease
- signaling pathway
- high throughput
- type diabetes
- insulin resistance
- emergency department
- dna methylation
- bone marrow
- high fat diet
- cell therapy
- adverse drug
- umbilical cord
- skeletal muscle
- drug induced