Login / Signup

Biocidal activity of polylactic acid-based nano-formulated abamectin on Acyrthosiphon pisum (Hemiptera: Aphididae) and the aphid predator Adalia bipunctata (Coleoptera: Coccinellidae).

Changjiao SunManli YuZhanghua ZengFrédéric FrancisHaixin CuiFrançois Jean Verheggen
Published in: PloS one (2020)
Abamectin is a common biocide used to control agricultural insect pests. However, the water insolubility of abamectin may result in extra organic solvent introduced in the environment. To solve this issue, it is desirable to develop nanoformulations to encapsulate abamectin with environment-friendly polymers. In this study, two polylactic acid based abamectin nanoformulations were prepared. The average particle sizes, measured by dynamic light scattering and transmission electron microscope, were 240 nm and 150 nm, respectively. The insecticidal activity of these nano-formulated abamectin was examined in the laboratory on the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae). The acute toxicity of nano-formulated abamectin on non-target aphid predator Adalia bipunctata (Coleoptera: Coccinellidae) was also evaluated by topical, residual and oral exposure. The two nano-formulated abamectin had comparable insecticidal effect with commercial abamectin formulation against the pea aphid. Taking median lethal concentration (LC50) as the toxicological endpoint, nanoformulations had higher contact toxicity and lower oral toxicity to first-instar larvae of the predator A. bipunctata. These results are expected to contribute to the application of solvent-free nano-formulated pesticides that comply with the integrated pest management (IPM) strategies.
Keyphrases
  • oxidative stress
  • risk assessment
  • photodynamic therapy
  • climate change
  • mass spectrometry
  • high resolution
  • respiratory failure
  • drug induced
  • solar cells