Login / Signup

Escherichia coli non-coding regulatory regions are highly conserved.

Cameron R LamoureuxPatrick V PhaneufBernhard O PalssonDaniel C Zielinski
Published in: NAR genomics and bioinformatics (2024)
Microbial genome sequences are rapidly accumulating, enabling large-scale studies of sequence variation. Existing studies primarily focus on coding regions to study amino acid substitution patterns in proteins. However, non-coding regulatory regions also play a distinct role in determining physiologic responses. To investigate intergenic sequence variation on a large-scale, we identified non-coding regulatory region alleles across 2350 Escherichia coli strains. This 'alleleome' consists of 117 781 unique alleles for 1169 reference regulatory regions (transcribing 1975 genes) at single base-pair resolution. We find that 64% of nucleotide positions are invariant, and variant positions vary in a median of just 0.6% of strains. Additionally, non-coding alleles are sufficient to recover E. coli phylogroups. We find that core promoter elements and transcription factor binding sites are significantly conserved, especially those located upstream of essential or highly-expressed genes. However, variability in conservation of transcription factor binding sites is significant both within and across regulons. Finally, we contrast mutations acquired during adaptive laboratory evolution with wild-type variation, finding that the former preferentially alter positions that the latter conserves. Overall, this analysis elucidates the wealth of information found in E. coli non-coding sequence variation and expands pangenomic studies to non-coding regulatory regions at single-nucleotide resolution.
Keyphrases