Login / Signup

Geothermal ecosystems on Mt. Erebus, Antarctica, support diverse and taxonomically novel biota.

Trine Bertram RasmussenStephen E NoellCraig W HerboldIan A DickieRoanna Richards-BabbageMatthew B StottS Craig CaryIan R McDonald
Published in: FEMS microbiology ecology (2024)
Mt. Erebus, Antarctica, is the southernmost active volcano in the world and harbors diverse geothermally unique ecosystems, including 'Subglacial' and 'Exposed' features, surrounded by a vast desert of ice and snow. Previous studies, while limited in scope, have highlighted the unique and potentially endemic biota of Mt. Erebus. Here, we provide an amplicon-based biodiversity study across all domains of life and all types of geothermal features, with physicochemical and biological data from 48 samples (39 Exposed and 9 Subglacial) collected through various field seasons. We found potentially high taxonomic novelty among prokaryotes and fungi, supporting past hypotheses of high endemism due to the distinctive and isolated environment; in particular, the large number of taxonomically divergent fungal sequences was surprising. We found that different site types had unique physicochemistry and biota; Exposed sites were warmer than Subglacial (median: 40 vs 10°C for Exposed and Subglacial, respectively) and tended to have more photosynthetic organisms (Cyanobacteria and Chlorophyta). Subglacial sites had more Actinobacteriota, correlated with greater concentrations of Ca and Mg present. Our results also suggest potential human impacts on these remote, highly significant sites, finding evidence for fungal taxa normally associated with wood decay. In this study, we provide a blueprint for future work aimed at better understanding the novel biota of Mt. Erebus.
Keyphrases
  • climate change
  • endothelial cells
  • machine learning
  • current status