An Artificial Intelligence Analysis of Electrocardiograms for the Clinical Diagnosis of Cardiovascular Diseases: A Narrative Review.
Assunta Di CostanzoCarmen Anna Maria SpaccarotellaGiovanni EspositoCiro IndolfiPublished in: Journal of clinical medicine (2024)
Artificial intelligence (AI) applied to cardiovascular disease (CVD) is enjoying great success in the field of scientific research. Electrocardiograms (ECGs) are the cornerstone form of examination in cardiology and are the most widely used diagnostic tool because they are widely available, inexpensive, and fast. Applications of AI to ECGs, especially deep learning (DL) methods using convolutional neural networks (CNNs), have been developed in many fields of cardiology in recent years. Deep learning methods provide valuable support for rapid ECG interpretation, demonstrating a diagnostic capability overlapping with specialists in the diagnosis of CVD by a classical analysis of macroscopic changes in the ECG trace. Through photoplethysmography, wearable devices can obtain single-derivative ECGs for the recognition of AI-diagnosed arrhythmias. In addition, CNNs have been developed that recognize no macroscopic electrocardiographic changes and can predict, from a 12-lead ECG, atrial fibrillation, even from sinus rhythm; left and right ventricular function; hypertrophic cardiomyopathy; acute coronary syndromes; or aortic stenosis. The fields of application are many, but numerous are the limitations, mainly associated with the reliability of the acquired data, an inability to verify black box processes, and medico-legal and ethical problems. The challenge of modern medicine is to recognize the limitations of AI and overcome them.
Keyphrases
- artificial intelligence
- deep learning
- heart rate
- convolutional neural network
- left ventricular
- hypertrophic cardiomyopathy
- cardiovascular disease
- aortic stenosis
- big data
- heart rate variability
- atrial fibrillation
- machine learning
- transcatheter aortic valve replacement
- left atrial
- aortic valve replacement
- blood pressure
- acute coronary syndrome
- ejection fraction
- transcatheter aortic valve implantation
- heart failure
- aortic valve
- cardiac surgery
- mental health
- percutaneous coronary intervention
- coronary artery disease
- type diabetes
- transcription factor
- acute kidney injury
- left atrial appendage
- oral anticoagulants
- cardiovascular events
- decision making
- catheter ablation