Login / Signup

Impact of cis- versus trans-Configuration of Butylene Carbonate Electrolyte on Microscopic Solid Electrolyte Interphase Formation Processes in Lithium-Ion Batteries.

Kasumi MiyazakiNorio TakenakaTakuya FujieEriko WatanabeYuki YamadaAtsuo YamadaMasataka Nagaoka
Published in: ACS applied materials & interfaces (2019)
The solid electrolyte interphase (SEI) film, which consists of the products of reduction reaction of the electrolyte, has a strong influence on the lifetime and safety of Li-ion batteries. Of particular importance when designing SEI films is its strong dependence on the electrolyte solvent. In this study, we focused on geometric isomers cis- and trans-2,3-butylene carbonates ( c/ t-BC) as model electrolytes. Despite their similar structures and chemical properties, t-BC-based electrolytes have been reported to enable the reversible reaction of graphite anodes [as in ethylene carbonate (EC)], whereas c-BC-based electrolytes cause the exfoliation of graphite [as in propylene carbonate (PC)]. To understand the microscopic origin of the different electrochemical behaviors of t-BC and c-BC, we applied Red Moon simulation to elucidate the microscopic SEI film formation processes. The results revealed that the SEI film formed in c-BC-based electrolytes contains fewer dimerized products, which are primary components of a good SEI film; this lower number of dimerized products can cause reduced film stability. As one of the origins of the decreased dimerization in c-BC, we identified the larger solvation energy of c-BC for the intermediate species and its smaller diffusion constant, which largely diminishes the dimerization. Moreover, the correlation among the Li+ intercalation behavior, nature of the SEI film, and strength of solvation was found to be common for EC/PC and t-BC/ c-BC electrolytes, confirming the importance of solvation of the intermediates in the stability of the SEI film. These results suggest that weakening the solvation of the intermediates is one possible way to stabilize the SEI film for better charge-discharge performance.
Keyphrases
  • ion batteries
  • ionic liquid
  • room temperature
  • reduced graphene oxide
  • molecular dynamics
  • gold nanoparticles
  • high resolution
  • genetic diversity