Login / Signup

Epoxy Phase-Change Materials Based on Paraffin Wax Stabilized by Asphaltenes.

Svetlana O IlyinaAnna V KostyukIrina Y GorbunovaNikolai I LukashovMichael L KerberSergey O Ilyin
Published in: Polymers (2023)
The usual problem of meltable phase-change agents is the instability in their form upon heating, which can be solved by placing them into a continuous polymer matrix. Epoxy resin is a suitable medium for dispersing molten agents, but it is necessary to make the obtained droplets stable during the curing of the formed phase-change material. This work shows that molten paraffin wax forms a Pickering emulsion in an epoxy medium and in the presence of asphaltenes extracted from heavy crude oil. Theoretical calculations revealed the complex equilibrium in the epoxy/wax/asphaltene triple system due to their low mutual solubility. Rheological studies showed the viscoplastic behavior of the obtained dispersions at 25 °C, which disappears upon the heating and melting of the paraffin phase. Wax and asphaltenes increased the viscosity of the epoxy medium during its curing but did not inhibit cross-linking or reduce the glass transition temperature of the cured polymer. As a result of curing, it is possible to obtain phase-change materials containing up to 45% paraffin wax that forms a dispersed phase with a size of 0.2-6.5 μm. The small size of dispersed wax can decrease its degree of crystallinity to 13-29% of its original value, reducing the efficiency of the phase-change material.
Keyphrases
  • molecular dynamics
  • molecular dynamics simulations
  • mass spectrometry
  • density functional theory