Surface-enhanced Raman scattering analysis of serum albumin via adsorption-exfoliation on hydroxyapatite nanoparticles for noninvasive cancers screening.
Juqiang LinMengmeng ZhengYamin LinKecan LinJinshu ZengShusen XieYun YuJuqiang LinPublished in: Journal of biophotonics (2020)
Combining serum albumin via adsorption-exfoliation on hydroxyapatite particles (HAp) with surface-enhanced Raman scattering (SERS), we developed a novel quantitative analysis of albumin method from blood serum for cancers screening applications. The quantitatively analysis obtained by our HAp method had a good linear relationship from 1 to 10 g/dL, and the lower limit of detection was less than the albumin prognostic factor for disease (3.5 g/dL). Serum albumin was adsorbed and exfoliated by HAp from serum samples of liver cancer patients, breast cancer patients and healthy volunteers and mixed with silver colloids to perform SERS spectral analysis. Based on the PLS-SVM algorithm, the diagnostic accuracies of liver cancer patients and breast cancer patients were 100% and 96.68%, respectively. Moreover, this algorithm successfully predicted the unidentified subjects with a diagnostic accuracy of 93.75%. This exploratory work demonstrated that HAp-adsorbed-exfoliated serum proteins combined with SERS spectroscopy has great potential for cancer screening.