Login / Signup

Enantioselective Copper Catalyzed Alkyne-Azide Cycloaddition by Dynamic Kinetic Resolution.

En-Chih LiuJoseph J Topczewski
Published in: Journal of the American Chemical Society (2019)
The copper(I) catalyzed alkyne-azide cycloaddition (CuAAC), a click reaction, is one of the most powerful catalytic reactions developed during the last two decades. Conducting CuAAC enantioselectively would add a third dimension to this reaction and would enable the direct synthesis of α-chiral triazoles. Doing so is demanding because the two precursors have linear geometries, and the triazole product is a flat heterocycle. Designing a chiral catalyst is further complicated by the complex mechanism of CuAAC. We report an enantioselective CuAAC (E-CuAAC), enabled by dynamic kinetic resolution (DKR). The E-CuAAC is high yielding and affords up to 99:1 er. The E-CuAAC can directly generate α-chiral triazoles in a complex molecular environment.
Keyphrases
  • ionic liquid
  • capillary electrophoresis
  • room temperature
  • gold nanoparticles
  • highly efficient
  • carbon dioxide
  • oxide nanoparticles
  • neural network