Login / Signup

TRiPPing the sensors: The osmosensing pathway of Polycystin 2.

K M Márquez-NoguerasR M KnutilaV VuchkosvkaIvana Y Kuo
Published in: bioRxiv : the preprint server for biology (2023)
Mutations to polycystin-2 (PC2), a non-selective cation permeant transient receptor potential channel, results in polycystic kidney disease (PKD). Despite the disease relevance of PC2, the physiological agonist that activates PC2 has remained elusive. As one of the earliest symptoms in PKD is a urine concentrating deficiency, we hypothesized that shifts in osmolarity experienced by the collecting duct cells would activate PC2 and loss of PC2 would prevent osmosensing. We found that mice with inducible PC2 knocked out (KO) in renal tubules had dilute urine. Hyperosmotic stimuli induced a rise in endoplasmic reticulum (ER)-mediated cytosolic calcium which was absent in PC2 KO mice and PC2 KO cells. A pathologic point mutation that prevents ion flux through PC2 inhibited the calcium rise, pointing to the centrality of PC2 in the osmotic response. To understand how an extracellular stimulus activated ER-localized PC2, we examined microtubule-ER dynamics, and found that the osmotically induced calcium increase was preceded by microtubule destabilization. This was due to a novel interaction between PC2 and the microtubule binding protein MAP4 that tethers the microtubules to the ER. Finally, disruption of the MAP4-PC2 interaction prevented incorporation of the water channel aquaporin 2 following a hyperosmotic challenge, in part explaining the dilute urine. Our results demonstrate that MAP4-dependent microtubule stabilization of ER-resident PC2 is required for PC2 to participate in the osmosensing pathway. Moreover, osmolarity represents a bona fide physiological stimulus for ER-localized PC2 and loss of PC2 in renal epithelial cells impairs osmosensing ability and urine concentrating capacity.
Keyphrases