Login / Signup

Current Progress of Electrocatalysts for Ammonia Synthesis Through Electrochemical Nitrogen Reduction Under Ambient Conditions.

Anmin LiuYanan YangXuefeng RenQidong ZhaoMengfan GaoWeixin GuanFanning MengLiguo GaoQiyue YangXingyou LiangTingli Ma
Published in: ChemSusChem (2020)
Ammonia, one of the most important chemicals and carbon-free energy carriers, is mainly produced by the traditional Haber-Bosch process operated at high pressure and temperature, which results in massive energy consumption and CO2 emissions. Alternatively, the electrocatalytic nitrogen reduction reaction to synthesize NH3 under ambient conditions using renewable energy has recently attracted significant attention. However, the competing hydrogen evolution reaction (HER) significantly reduces the faradaic efficiency and NH3 production rate. The design of high-performance electrocatalysts with the suppression of the HER for N2 reduction to NH3 under ambient conditions is a crucial consideration for the development of electrocatalytic NH3 synthesis with high FE and NH3 production rate. Five kinds of recently developed electrocatalysts classified by their chemical compositions are summarized, with particular emphasis on the relationship between their optimal electrocatalytic conditions and NH3 production performance. Conclusions and perspectives are provided for the future design of high-performance electrocatalysts for electrocatalytic NH3 production. The Review can give practical guidance for the design of effective electrocatalysts with high FE and NH3 production rates.
Keyphrases