Login / Signup

Reservoir Computing Using DNA Oscillators.

Xingyi LiuKeshab K Parhi
Published in: ACS synthetic biology (2022)
This paper presents novel implementations for reservoir computing (RC) using DNA oscillators . An RC system consists of two parts: reservoir and readout layer . The reservoir projects input signals into a high-dimensional feature space which is formed by the state of the reservoir. The internal connectivity structure of the reservoir remains unchanged throughout computation. After training, the readout layer maps the projected features into the desired output. It has been shown in prior work that coupled deoxyribozyme oscillators can be used as the reservoir. In this paper, we utilize the n -phase molecular oscillator ( n ≥ 3) presented in our prior work. The readout layer implements a matrix-vector multiplication using molecular reactions based on molecular analog multiplication. All molecular reactions are mapped to DNA strand displacement (DSD) reactions. We also introduce a novel encoding method that can significantly reduce the reaction time. The feasibility of the proposed RC systems based on the DNA oscillator is demonstrated for the handwritten digit recognition task and a second-order nonlinear prediction task.
Keyphrases
  • single molecule
  • circulating tumor
  • water quality
  • cell free
  • machine learning
  • virtual reality