Login / Signup

Nitrogen Reduction by Multimetallic trans-Uranium Actinide Complexes: A Theoretical Comparison of Np and Pu to U.

Dipak PanthiOlajumoke AdeyigaNaveen K DanduSamuel O Odoh
Published in: Inorganic chemistry (2019)
There is recent interest in organometallic complexes of the trans-uranium elements. However, preparation and characterization of such complexes are hampered by radioactivity and chemotoxicity issues as well as the air-sensitive and poorly understood behavior of existing compounds. As such, there are no examples of small-molecule activation via redox reactivity of organometallic trans-uranium complexes. This contrasts with the situation for uranium. Indeed, a multimetallic uranium(III) nitride complex was recently synthesized, characterized, and shown to be able to capture and functionalize molecular nitrogen (N2) through a four-electron reduction process, N2 → N24-. The bis-uranium nitride, U-N-U core of this complex is held in a potassium siloxide framework. Importantly, the N24- product could be further functionalized to yield ammonia (NH3) and other desirable species. Using the U-N-U potassium siloxide complex, K3U-N-U, and its cesium analogue, Cs3U-N-U, as starting points, we use scalar-relativistic and spin-orbit coupled density functional theory calculations to shed light on the energetics and mechanism for N2 capture and functionalization. The N2 → N24- reactivity depends on the redox potentials of the U(III) centers and crucially on the stability of the starting complex with respect to decomposition into the mixed oxidation U(IV)/U(III) K2U-N-U or Cs2U-N-U species. For the trans-uranium, Np and Pu analogues of K3U-N-U, the N2 → N24- process is endoergic and would not occur. Interestingly, modification of the Np-O and Pu-O bonds between the actinide cores and the coordinated siloxide framework to Np-NH, Pu-NH, Np-CH2, and Pu-CH2 bonds drastically improves the reaction free energies. The Np-NH species are stable and can reductively capture and reduce N2 to N24-. This is supported by analysis of the spin densities, molecular structure, long-range dispersion effects, as well as spin-orbit coupling effects. These findings chart a path for achieving small-molecule activation with organometallic neptunium analogues of existing uranium complexes.
Keyphrases