Login / Signup

Aggregation-Induced Emission-Based Chemodosimeter Approach for Selective Sensing and Imaging of Hg(II) and Methylmercury Species.

Amrita ChatterjeeMainak BanerjeeDipratn G KhandareRam U GawasStarlaine C MascarenhasAnasuya GangulyRishabh GuptaHrishikesh Joshi
Published in: Analytical chemistry (2017)
Methylmercury (CH3Hg+) is the common form of organic mercury and is more toxic than its inorganic or elemental forms. Mercury is emanated in the course of various natural events and human activities and converts to methylmercury by anaerobic organisms. CH3Hg+ are ingested by fish and subsequently bioaccumulated in their tissue and, eventually, enter the human diet, causing serious health issues. Therefore, selective and sensitive detection of bioaccumulated CH3Hg+ in fish samples is essential. Herein, the development of a simple, highly sensitive and selective aggregation-induced emission (AIE)-based turn-on probe for both inorganic mercury ions and organicmercury species is reported. The probe's function is based on mercury ion-promoted transmetalation reaction of aryl boronic acid. The probe, a tetraphenylethylene (TPE)-monoboronic acid (1), was successfully utilized for AIE-based fluorescence imaging study on methylmercury-contaminated live cells and zebrafish for the first time. Both Hg(II) and CH3Hg+ ensued a fast transmetalation of TPE-boronic acid causing drastic reduction in the solubility of the resulting product (TPE-HgCl/TPE-HgMe) in the working solvent system. At the dispersed phase, the aggregated form of TPE-mercury ions recovers planarity because of restricted rotational freedom promoting aggregation-induced emission. Simple design, cost-effective synthesis, high selectivity, inexpensive instrumentation, fast signal transduction, and low limit of detection (0.12 ppm) are some of the key merits of this analytical tool.
Keyphrases