Login / Signup

Hybrid method for accurate starch estimation in adulterated turmeric using Vis-NIR spectroscopy.

Madhusudan G LanjewarPranay P MorajkarJivan S Parab
Published in: Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment (2023)
Turmeric is widely used as a health supplement and foodstuff in South East Asian countries because of its medicinal benefits. Like several other plants and peppers, turmeric is prone to exploitation because of its economic value, rising consumer need, and essential food element that adds colour and flavour. Due to this, quick and comprehensive testing processes are needed to detect adulterants in turmeric. In this study, pure turmeric powders were mixed with starch in proportions ranging from 0 to 50% with a 1% variation to obtain different combinations. Reflectance spectra of pure turmeric and starch mixed samples were recorded using a JASCO-V770 spectrometer from 400 to 2050 nm. The recorded spectra were pre-processed using a Multiplicative Scatter Correction (MSC) and Standard Normal Variate (SNV). The Savitzky-Golay (SG) filter was initially applied to these original (X), MSC, and SNV-corrected spectra. Secondly, the Extra Tree Regressor (ETR) feature selection method was employed to select the best features. Finally, principal component analysis (PCA) was used to reduce the dimension of the selected features. The stacked generalization method was applied to improve the performance of this work. Both regressors and classifier stacking techniques have been tested with different classification and regression methods. The K-Nearest Neighbours (KNN), Decision Tree (DT), and Random Forest (RF) models were used as base learners, and Logistic Regression (LRC) was used as a meta-model for classification and Linear Regression (LR) for regression analysis. The proposed method achieved the best regression performance with r 2 of 0.999, Root Mean Square Error (RMSE) of 0.206, Ratio of Performance to Deviation (RPD) of 73.73, and Range Error Ratio (RER) of 480.58, whereas 100% F1 score and Matthew's Correlation Coefficient (MCC) classification performance.
Keyphrases
  • machine learning
  • deep learning
  • high resolution
  • healthcare
  • density functional theory
  • public health
  • mental health
  • climate change
  • computed tomography
  • drug delivery
  • molecular dynamics
  • drug release
  • data analysis