Login / Signup

Low-dose lithium feeding increases the SERCA2a-to-phospholamban ratio, improving SERCA function in murine left ventricles.

Sophie I HamstraNigel KurganRyan W BaranowskiLiqun QiuColton J F WatsonHolt N MessnerRebecca E K MacPhersonAdam J MacNeilBrian D RoyVal A Fajardo
Published in: Experimental physiology (2020)
The sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) pump is responsible for regulating calcium (Ca2+ ) within myocytes, with SERCA2a being the dominant isoform in cardiomyocytes. Its inhibitor, phospholamban (PLN), acts by decreasing the affinity of SERCA for Ca2+ . Changes in the SERCA2a:PLN ratio can cause Ca2+ dysregulation often seen in patients with dilated cardiomyopathy and heart failure. The enzyme glycogen synthase kinase-3 (GSK3) is known to downregulate SERCA function by decreasing the SERCA2a:PLN ratio. In this study, we sought to determine whether feeding mice low-dose lithium, a natural GSK3 inhibitor, would improve left ventricular SERCA function by altering the SERCA2a:PLN ratio. To this end, male wild-type C57BL/6J mice were fed low-dose lithium via drinking water (10 mg kg-1  day-1 LiCl for 6 weeks) and left ventricles were harvested. GSK3 activity was significantly reduced in LiCl-fed versus control-fed mice. The apparent affinity of SERCA for Ca2+ was also increased (pCa50 ; control, 6.09 ± 0.03 versus LiCl, 6.26 ± 0.04, P < 0.0001) along with a 2.0-fold increase in SERCA2a:PLN ratio in LiCl-fed versus control-fed mice. These findings suggest that low-dose lithium supplementation can improve SERCA function by increasing the SERCA2a:PLN ratio. Future studies in murine preclinical models will determine whether GSK3 inhibition via low-dose lithium could be a potential therapeutic strategy for dilated cardiomyopathy and heart failure.
Keyphrases