Login / Signup

Coloring biology in grape skin: a prospective strategy for molecular farming.

Jinggui FangSudisha JogaiahLe GuanXin SunMostafa Abdelrahman
Published in: Physiologia plantarum (2018)
Grapevine is one of the earliest domesticated fruit crops that has been widely prized and cultivated for its fruit and wine. Grapes exhibit a wide range of colors, ranging from the green/yellow to the dark blue tones according to the amount and composition of anthocyanin. During the last decades, many studies regarding the genetic control of the grape color in European, American and Asian cultivars have been well documented. DNA binding genes for several transcription factors, such as MYBA1 and MYBA2 haplotype compositions at the color locus are the key determinant of anthocyanin diversity and grape skin color development. Retrotransposon in the MYBA1 promoter region and mutation in MYBA2 coding sequence resulted in a white-skinned grape. The MYB haplotypes affect the ratio of tri/di-hydroxylated anthocyanins and methylated/non-methylated anthocyanins through the regulation of several structural genes involved in the anthocyanin biosynthesis, resulting in diverse colored tones. The present review provides an overview of the current state of the molecular mechanisms underlying the genetic regulations of the anthocyanin accumulation and diversification in grapes. The hypothesized models described in this review is a step forward to potentially predict the color diversification in different grape cultivars, which translate the advances in fundamental plant biology toward the application of grape molecular breeding.
Keyphrases