Sensitization of Nanocrystalline Metal Oxides with a Phosphonate-Functionalized Perylene Diimide for Photoelectrochemical Water Oxidation with a CoOx Catalyst.
Joel T KirnerRichard G FinkePublished in: ACS applied materials & interfaces (2017)
A planar organic thin film composed of a perylene diimide dye (N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide, PMPDI) with photoelectrochemically deposited cobalt oxide (CoOx) catalyst was previously shown to photoelectrochemically oxidize water (DOI: 10.1021/am405598w). Herein, the same PMPDI dye is studied for the sensitization of different nanostructured metal oxide (nano-MOx) films in a dye-sensitized photoelectrochemical cell architecture. Dye adsorption kinetics and saturation decreases in the order TiO2 > SnO2 ≫ WO3. Despite highest initial dye loading on TiO2 films, photocurrent with hydroquinone (H2Q) sacrificial reductant in pH 7 aqueous solution is much higher on SnO2 films, likely due to a higher driving force for charge injection into the more positive conduction band energy of SnO2. Dyeing conditions and SnO2 film thickness were subsequently optimized to achieve light-harvesting efficiency >99% at the λmax of the dye, and absorbed photon-to-current efficiency of 13% with H2Q, a 2-fold improvement over the previous thin-film architecture. A CoOx water-oxidation catalyst was photoelectrochemically deposited, allowing for photoelectrochemical water oxidation with a faradaic efficiency of 31 ± 7%, thus demonstrating the second example of a water-oxidizing, dye-sensitized photoelectrolysis cell composed entirely of earth-abundant materials. However, deposition of CoOx always results in lower photocurrent due to enhanced recombination between catalyst and photoinjected electrons in SnO2, as confirmed by open-circuit photovoltage measurements. Possible future studies to enhance photoanode performance are discussed, including alternative catalyst deposition strategies or structural derivatization of the perylene dye.
Keyphrases
- visible light
- room temperature
- aqueous solution
- reduced graphene oxide
- highly efficient
- ionic liquid
- quantum dots
- single cell
- gold nanoparticles
- stem cells
- perovskite solar cells
- cell therapy
- hydrogen peroxide
- mass spectrometry
- dna damage
- ms ms
- mesenchymal stem cells
- dna repair
- liquid chromatography
- gas chromatography
- single molecule
- ultrasound guided
- fluorescent probe
- living cells
- sensitive detection
- case control
- crystal structure