Login / Signup

Continuous Directed Evolution of a Feedback-Resistant Arabidopsis Arogenate Dehydratase in Plantized Escherichia coli .

Bryan J LeongAndrew D Hanson
Published in: ACS synthetic biology (2022)
Continuous directed evolution (CDE) is a powerful tool for enzyme engineering due to the depth and scale of evolutionary search that it enables. If suitably controlled and calibrated, CDE could be widely applied in plant breeding and biotechnology to improve plant enzymes ex planta . We tested this concept by evolving Arabidopsis arogenate dehydratase (AtADT2) for resistance to feedback inhibition. We used an Escherichia coli platform with a phenylalanine biosynthesis pathway reconfigured ("plantized") to mimic the plant pathway, a T7RNA polymerase-base deaminase hypermutation system (eMutaT7), and 4-fluorophenylalanine as selective agent. Selection schemes were prevalidated using a known feedback-resistant AtADT2 variant. We obtained variants that had 4-fluorophenylalanine resistance at least matching the known variant and that carried mutations in the ACT domain responsible for feedback inhibition. We conclude that ex planta CDE of plant enzymes in a microbial platform is a viable way to tailor characteristics that involve interaction with small molecules.
Keyphrases
  • cell wall
  • escherichia coli
  • transcription factor
  • plant growth
  • high throughput
  • staphylococcus aureus
  • dna methylation
  • klebsiella pneumoniae
  • cystic fibrosis
  • multidrug resistant