Login / Signup

Emergence of metal selectivity and promiscuity in metalloenzymes.

Hyunuk EomWoon Ju Song
Published in: Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry (2019)
Metal coordination with proteinaceous ligands has greatly expanded the chemical toolbox of proteins and their biological roles. The structure and function of natural metalloproteins have been determined according to the physicochemical properties of metal ions bound to the active sites. Concurrently, amino acid sequences are optimized for metal coordination geometry and/or dedicated action of metal ions in proteinaceous environments. In some occasions, however, natural enzymes exhibit promiscuous reactivity with more than one designated metal ion, under in vitro and/or in vivo conditions. In this review, we discuss selected examples of metalloenzymes that bind various first-row, mid- to late-transition metal ions for their native catalytic activities. From these examples, we suggest that environmental, inorganic, and biochemical factors, such as bioavailability, native organism, cellular compartment, reaction mechanism, binding affinity, protein sequence, and structure, might be responsible for determining metal selectivity or promiscuity. The current work proposes how natural metalloproteins might have emerged and adapted for specific metal incorporation under the given circumstances and may provide insights into the design and engineering of de novo metalloproteins.
Keyphrases
  • amino acid
  • risk assessment
  • small molecule
  • transition metal
  • protein protein
  • structural basis