Login / Signup

One-Dimensional Anhydrous Proton Conducting Channel Formation at High Temperature in a Pt(II)-Based Metallo-Supramolecular Polymer and Imidazole System.

Chanchal ChakrabortyUtpal RanaRakesh K PandeySatoshi MoriyamaMasayoshi Higuchi
Published in: ACS applied materials & interfaces (2017)
One dimensional (1D) Pt(II)-based metallo-supramolecular polymer with carboxylic acids (polyPtC) was synthesized using a new asymmetrical ditopic ligand with a pyridine moiety bearing two carboxylic acids. The carboxylic acids in the polymer successfully served as apohosts for imidazole loaded in the polymer interlayer scaffold to generate highly ordered 1D imidazole channels through the metallo-supramolecular polymer chains. The 1D structure of imidazole loaded polymer (polyPtC-Im) was analyzed in detail by thermogravimetric analysis, powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and ultraviolet-visible and photoluminescence spectroscopic measurements. PolyPtC-Im exhibited proton conductivity of 1.5 × 10-5 S cm-1 at 120 °C under completely anhydrous conditions, which is 6 orders of magnitude higher than that of the pristine metallo-supramolecular polymer.
Keyphrases