Login / Signup

Lability and Basicity of Bipyridine-Carboxylate-Phosphonate Ligand Accelerate Single-Site Water Oxidation by Ruthenium-Based Molecular Catalysts.

David W ShafferYan XieDavid J SzaldaJavier J Concepcion
Published in: Journal of the American Chemical Society (2017)
A critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s-1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L)2] (bpH2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediates O-O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.
Keyphrases
  • highly efficient
  • electron transfer
  • transition metal
  • metal organic framework
  • ionic liquid
  • hydrogen peroxide
  • nitric oxide
  • body composition
  • molecular dynamics