Anti-PD-L1 DNAzyme Loaded Photothermal Mn2+ /Fe3+ Hybrid Metal-Phenolic Networks for Cyclically Amplified Tumor Ferroptosis-Immunotherapy.
Peng LiuXinyi ShiYing PengJianming HuJinsong DingWenhu ZhouPublished in: Advanced healthcare materials (2021)
Ferroptosis can activate immune response via inducing tumor cells immunogenic cell death (ICD), and antitumor immunity in turn boosts the efficacy of ferroptosis by excreting interferon gamma (IFN-γ), which shows a promising combo for synergistically amplified tumor treatment. However, their combination is strictly limited by the complexity of tumor microenvironment, including poor ferroptosis response and immunosuppressive factors in tumor. Herein, a metal-phenolic networks (MPNs) nanoplatform with all-active components is constructed to favor the ferroptosis-immunotherapy cyclical synergism. The photothermal MPNs are assembled via coordination between tannic acid (TA) and metal-ion complex of Fe3+ /Mn2+ , through which a PD-L1 inhibiting DNAzyme (DZ) is loaded to regulate the immunosuppressive PD-1/PD-L1 pathway. After intracellular delivery, each component of MPNs exerts their respective functions: Fe2+ is in situ generated from Fe3+ by TA reduction to trigger ferroptosis, while DZ is activated by Mn2+ to effectively silence PD-L1. With external laser irradiation, photothermal therapy is initiated to synergize with ferroptosis for enhanced ICD, which induces strong antitumor immunes. Combined with DZ-mediated PD-L1 suppression, a cyclically amplified tumor ferroptosis-immunotherapy is achieved, resulting in obliteration of both primary and distant tumor. This work provides a smart, simple, yet robust nanomedicine-based combination for self-amplified tumor treatment.