NIR-II Fluorophore with Dithienylethene as an Electron Donor for Fluorescence/Photoacoustic Dual-Model Imaging and Photothermal Therapy.
Jia LiRuonan WangYing SunPanpan XiaoShuo YangXin WangQu-Li FanWei WuXiqun JiangPublished in: ACS applied materials & interfaces (2021)
Well-designed second near-infrared (NIR-II) fluorophores are promising in optical diagnosis and therapy of tumors. In this work, we synthesized a donor-acceptor-donor (D-A-D) NIR-II fluorophore named BBTD-BET with dithienylethene as an electron donor and benzobisthiadiazole as an electron acceptor. To the best of our knowledge, this is the first report of using dithienylethene, a typical photochromic molecule, as a building block for NIR-II fluorophores. We studied the geometrical configuration, electronic state, and optical properties of BBTD-BET by both theoretical and experimental means. BBTD-BET had absorption and emission in the NIR-I and NIR-II spectral ranges, respectively. Using PEGylated BBTD-BET as a theranostic agent, we achieved NIR-II fluorescence/photoacoustic (PA) dual-modal imaging and attained high imaging resolution, desired signal-to-noise ratio, and excellent photothermal therapy (PTT) efficacy. After one PTT treatment, the tumors established in mice were eradicated. This work provides a novel organic conjugated molecule integrating NIR-II/PA dual-modal imaging and PTT functionalities that is very promising in the theranostic of tumors.