Association of ABCG1 gene methylation and its dynamic change status with incident type 2 diabetes mellitus: the Rural Chinese Cohort Study.
Ranran QieQing ChenTieqiang WangXiaoliang ChenJian WangRuirong ChengJinchun LinYang ZhaoDechen LiuPei QinCheng ChengLeilei LiuQuanman LiChunmei GuoQionggui ZhouGang TianMinghui HanShengbing HuangYanyan ZhangXiaoyan WuYuying WuYang LiXingjin YangYang ZhaoYifei FengDongsheng HuMing ZhangPublished in: Journal of human genetics (2020)
To explore whether DNA methylation of the ATP-binding cassette G1 (ABCG1) gene and its dynamic change are associated with incident type 2 diabetes mellitus (T2DM). We conducted a nested case-control study with 286 pairs of T2DM cases and matched controls nested in the Rural Chinese Cohort Study. Conditional logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for incident T2DM risk according to ABCG1 methylation level at baseline and its dynamic change at follow-up examination. Spearman's rank correlation coefficients were used to analyze the association between ABCG1 methylation and its possible risk factors in the control group. We found that T2DM risk increased by 16% (OR = 1.16, 95% CI = 1.02-1.31) with each 1% increase in DNA methylation levels of the ABCG1 loci CpG13 and CpG14. DNA methylation change of the ABCG1 locus CpG15 during the 6-year follow-up was associated with increased T2DM risk: T2DM risk increased by 78% in the upper tertile group (methylation gain ≥5%) versus lower tertile group (methylation gain <1%) (OR = 1.78, 95% CI = 1.01-3.15). Furthermore, body mass index was positively correlated with the DNA methylation level of the ABCG1 loci CpG13, CpG14 and CpG15. In conclusion, DNA methylation levels of the ABCG1 loci CpG13 and CpG14 and the methylation gain of locus CpG15 were positively associated with incident T2DM risk, which may suggest a possible etiologic pattern for T2DM and potentially improve T2DM prediction in rural Chinese people.