Dietary supplementation with Bacillus subtilis and xylo-oligosaccharides improves growth performance and intestinal morphology and alters intestinal microbiota and metabolites in weaned piglets.
Hao DingXichen ZhaoMd Abul Kalam AzadCui MaQiankun GaoJian-Hua HeXiangfeng KongPublished in: Food & function (2021)
The present study was conducted to investigate the effects of dietary supplementation with Bacillus subtilis (BS) and xylo-oligosaccharides (XOS) on growth performance, intestinal morphology, intestinal microbial community, and metabolites of weaned piglets. One hundred and twenty-eight piglets were randomly allocated to one of four groups, including a control group (basal diet), BS group (basal diet + 500 g t-1 BS), XOS group (basal diet + 250 g t-1 XOS), and BS + XOS group (basal diet + 500 g t-1 BS + 250 g t-1 XOS). Dietary BS and XOS were mixed with the basal diet. All groups had eight replicates with four piglets per replicate. The experiment lasted for 42 days. The results showed that dietary XOS supplementation increased the ADFI and ADG, while decreasing the F/G. Dietary BS or XOS supplementation improved the intestinal morphology of weaned piglets by increasing the villus height and the ratio of villus height to crypt depth in the ileum. In addition, dietary XOS supplementation increased the concentrations of butyrate in the ileum and tryptamine and spermidine in the colon, while decreasing the concentration of indole in the colon compared with the control group. Dietary BS supplementation increased the colonic concentrations of butyrate, tryptamine, and cadaverine, while decreasing the concentration of skatole compared with the control group. The LEfSe analysis identified 16 biomarkers in the ileum of the BS group. The intestinal microbiota alterations of weaned piglets indicated that dietary BS or XOS supplementation could improve intestinal health by increasing the gut microbial diversity and altering the relative abundances of different bacterial species. Moreover, Spearman's correlation analysis revealed the potential link between gut microbiota alterations and metabolite changes of weaned piglets. These findings suggest that dietary XOS supplementation could alone improve the growth performance, while dietary BS or XOS and BS with XOS supplementation could influence intestinal health by altering the intestinal morphology, microbial community, and metabolites of weaned piglets. Meanwhile, there were interactions between BS and XOS in intestinal metabolites.